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SUMMARY

Numerical time step limitations associated with the explicit treatment of advection-dominated problems in
computational ¯uid dynamics are often relaxed by employing Eulerian±Lagrangian methods. These are also
known as semi-Lagrangian methods in the atmospheric sciences. Such methods involve backward time
integration of a characteristic equation to ®nd the departure point of a ¯uid particle arriving at a Eulerian grid
point. The value of the advected ®eld at the departure point is obtained by interpolation. Both the trajectory
integration and repeated interpolation in¯uence accuracy. We compare the accuracy and performance of
interpolation schemes based on piecewise cubic polynomials and cubic B-splines in the context of a distributed
memory, parallel computing environment. The computational cost and interprocessor communication
requirements for both methods are reported. Spline interpolation has better conservation properties but requires
the solution of a global linear system, initially appearing to hinder a distributed memory implementation. The
proposed parallel algorithm for multidimensional spline interpolation has almost the same communication
overhead as local piecewise polynomial interpolation. We also compare various techniques for tracking
trajectories given different values for the Courant number. Large Courant numbers require a high-order ODE
solver involving multiple interpolations of the velocity ®eld. # 1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerical time step limitations associated with the explicit treatment of advection-dominated

problems in computational ¯uid dynamics are often relaxed by employing variants of the method of

characteristics. Characteristic-based schemes for advection±diffusion problems are known as

Eulerian±Lagrangian methods (ELMs). Baptista1 presents a broad overview of ELM-type methods

with applications to advection±diffusion transport problems. These methods involve backward time

integration of a characteristic equation in order to determine the location of the departure point of a

¯uid `particle' in the Lagrangian frame of reference. After the departure point is found, the upstream

value of the advected ®eld is obtained by interpolation. This value is later used as an initial condition

to integrate the diffusion equation in the Eulerian frame of reference. The diffusion equation is then

solved by means of conventional ®nite element, ®nite difference or spectral methods. Oliveira and
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Baptista2 distinguish between two types of ELMs, namely interpolation- and quadrature-based

methods. Interpolation-based methods simply assign values at the feet of characteristic curves to the

nodes of a computational grid and use these nodal values to solve the diffusion equation in the

Eulerian frame of reference. Quadrature-based methods are associated with ®nite element

discretizations and track quadrature points backwards instead of tracking nodes.

Finite difference ELM's require repeated interpolation of the advected ®eld and thus introduce

numerical diffusion. Such schemes are in general not conservative. The ability to control numerical

dissipation is critical to the implementation of interpolation-based ELMs and, for a given order of

accuracy, methods based on splines exhibit the best conservation properties. Characteristic schemes

of different ¯avours have been designed to model a wide spectrum of transport problems.3 The so-

called ELLAM methods designed for ¯ow in porous media4,5 are mass-conserving. Characteristic±

Galerkin ®nite element methods for the Navier±Stokes equations6±8 can also be shown to conserve

mass when inner products are evaluated exactly. Related methods which employ B-spline basis

functions are due to Bermejo9 and the spline±characteristic method for the simulation of thermal

convection.10 In the atmospheric sciences these numerical methods are known as semi-Lagrangian

schemes. Staniforth and CoÃteÂ11 present an overview of their use in atmospheric models.

The use of characteristics to integrate hyperbolic transport problems circumvents the Courant±

Freidrich±Lewy (CFL) stability bound associated with Eulerian schemes. The CFL condition ensures

that the domain of dependence of the analytical solution of a hyperbolic PDE is contained in the

domain of dependence of the numerical solution.12 Semi-Lagrangian methods shift the numerical

domain of dependence, in the form of a ®nite difference stencil, to the grid cell containing the

upstream departure point of the ¯uid particle trajectory in the Lagrangian reference frame.13 The

general form of the advection equation for a scalar ®eld f �x; t� is

df

dt
� @f
@t
� �u ? H�f � 0; f �x; t� � f �x�t0�; t0�; �1�

where the velocity vector is

dx

dt
� u�x; t�: �2�

The value of f is constant along trajectories described by (2). For passive advection a one-step semi-

Lagrangian method computes the material or substantial derivative along the trajectory originating at

�x*; tnÿ1� and terminating at �x; tn�,
df

dt
� f �x; tn� ÿ f �x*; tnÿ1�

Dt
� 0; �3�

which is equivalent to f �x; tn� ÿ f �x*; tnÿ1� � 0. Numerical interpolation is employed to obtain

f �x*; tnÿ1� at the foot of the characteristic. In essence, such a method depends on the accurate

backward integration of (2) to obtain the previous position of a ¯uid `particle',

x* � x�
�tnÿ1

tn

u�x; t�dt: �4�

Trajectory integration is discussed in Reference 14. The velocity u�x; t� is assumed to be known at

time levels tnÿ1 and tn and a variety of schemes developed for ordinary differential equations (ODEs)

are available for the numerical integration of (2). For example, Malevsky10 employs a second-order

trapezoidal Runge±Kutta scheme, whereas Robert15 proposes an iterative scheme based on the
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second-order-accurate midpoint Runge±Kutta method which iterates the displacement a � xÿ x*

according to the rule

a�k�1� � Dtu�xÿ a�k�=2; t ÿ Dt=2�; �5�
where the midpoint velocity is obtained by interpolation. Equation (2) is speci®ed at every grid point,

resulting in a set of independent ODEs which can be integrated in parallel.

Parallelization of a numerical model often requires modi®cation of existing algorithms. Both the

arithmetic operations and the interprocessor data exchange contribute to the overall cost of a

distributed memory, parallel solver. Performance is in¯uenced by data locality and overlapping

computation=communication. These criteria may supersede the straightforward optimization of the

number of ¯oating point operations needed to obtain the solution. The two steps involved in semi-

Lagrangian algorithms, i.e. integration of characteristic equations and interpolation at the feet of

characteristic curves, determine the accuracy and computational cost of these schemes. In this study

we analyse the accuracy and computational complexity of interpolation algorithms and trajectory

integration schemes in a distributed memory, parallel environment.

2. INTERPOLATION ALGORITHMS

2.1. Lagrange Interpolation in 1D

When u � u�x; t� is a constant and the Courant number C < 1, interpolation at grid points leads to

well-known Eulerian ®nite difference schemes.16 By adopting the standard notation f n
i � f �xi; tn�, the

numerical solution of (1) is written as

f n�1
i � p�xi ÿ uDt� �P

j

lj�xi ÿ uDt�f n
j ; �6�

where a � uDt is the displacement, p�x� represents the polynomial interpolating f at grid points and

lj�x� is the Lagrange basis polynomial at a grid point j,

lj�x� �
Y

n
n 6�j

xÿ xn
xj ÿ xn

:

For example, if linear interpolation is employed and C < 1, it follows that

f n�1
i � liÿ1�xi ÿ uDt�f n

iÿ1 � li�xi ÿ uDt�f n
i : �7�

If, on the other hand, N < C 4N � 1, then i! iÿ N on the right-hand side of (7). On a uniform

grid with mesh length Dx � xi�1 ÿ xi, expression (7) simpli®es to

f n�1
i � xi ÿ uDt ÿ xi

xiÿ1 ÿ xi

f n
iÿ1

xi ÿ uDt ÿ xiÿ1

xi ÿ xiÿ1

f n
i

� f n
i ÿ

uDt

Dx
�f n

i ÿ f n
iÿ1�; �8�

which is a ®rst-order upwind ®nite difference scheme.17,18 Similarly, quadratic interpolation results in

the well-known second-order Lax±Wendroff scheme

f n�1
i � f n

i ÿ
1

2

uDt

Dx
� f n

i�1 ÿ f n
iÿ1� �

1

2

uDt

Dx

� �2

� f n
i�1 ÿ 2f n

i � f n
iÿ1�: �9�

In the more general case of time-varying u�x; t�, semi-Lagrangian schemes rely on the trajectory

integration (4) to determine the upstream grid cell in which to interpolate.
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2.2. Interpolation in higher dimensions

Consider semi-Lagrangian methods in 2D and 3D which are based on interpolation. The

interpolating polynomial in 2D takes the form

p�x; y� � PN
n�0

PM
m�0

anmxnym; �10�

where f1; x; y; x2; xy; y2; . . . ; xnym; . . .g is a set of basis polynomials. A unique polynomial can be

constructed by choosing the coef®cients anm such that they satisfy the �M � 1� � �N � 1� degrees of

freedom p�xi; yj� � fij. Ef®cient algorithms for computing p�x; y� rely on an appropriate set of basis

polynomials (e.g. Lagrange, B-spline). A non-unique polynomial of lesser degree can be constructed

by reducing the number of degrees of freedom. For example, the scalar ®eld f �x; y� can be expanded

in terms of bilinear Lagrange basis polynomials lij�x; y� at four points as

f �x; y� �P2
i�1

P2
j�1

lij�x; y�f �xi; yj�: �11�

Alternatively, the interpolating polynomial can be formed as the Cartesian product of 1D

polynomials,

f �x; y� �P2
j�1

lj�y�
P2
i�1

li�x�f �xi; yj�: �12�

Advection schemes based on interpolation include higher-order cross-terms in the equivalent Taylor

series expansion of f at the upstream point. Computational costs can be reduced by neglecting terms

which do not affect the global truncation error. We illustrate this approach below by using the

Newton form of the interpolating polynomial. The derivation of computationally ef®cient schemes

from the Newton polynomial in the case of non-uniform grids is described in Reference 19.

2.3. Piecewise cubic Newton polynomial interpolation

Consider a regular Cartesian grid with uniform spacing. Given the upstream grid cell �xiÿ1; xi� at

the foot of the characteristic curve and the surrounding grid points (forming a stencil)

xiÿ2 < xiÿ1 < x < xi < xi�1; �13�
then the piecewise cubic Newton polynomial interpolating f in this grid cell is

p�x� � fiÿ1 � �xÿ xiÿ1�f �xiÿ1; xi� � �xÿ xiÿ1��xÿ xi�f �xiÿ1; xi; xi�1�
� �xÿ xiÿ1��xÿ xi��xÿ xi�1�f �xiÿ2; xiÿ1; xi; xi�1�:

�14�

Given Dx � xi�1 ÿ xi and x̂ � �xÿ xiÿ1�=Dx, it is possible to simplify the above expression to

p�x� � fiÿ1�1ÿ x̂� � fix̂� biÿ1 fxxiÿ1
� bi fxxi

; �15�
where

fxxi
� fi�1 ÿ 2fi � fiÿ1 �16�

and the coef®cients biÿ1 and bi are given by

biÿ1 � ÿ 1
6

x̂�1ÿ x̂��2ÿ x̂�; bi � ÿ 1
6

x̂�1ÿ x̂��1� x̂�: �17�
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Note that this scheme can be viewed as an extension of the Lax±Wendroff scheme (9) to four grid

points. Indeed, the scheme contains second-order terms of the form fi�1 ÿ 2fi � fiÿ1.

In two dimensions, interpolation in a 16616 stencil of grid points requires the derivatives fxx; fyy

and fxxyy. In general it is desirable to construct lower-degree polynomials by dropping o�Dx2Dy2�
terms such as fxxyy. This has the added bene®t of signi®cantly reducing the number of ¯oating point

operations (¯ops). Such a scheme is given below:

f n
j � �1ÿ x̂� f n

iÿ1;j � x̂f n
i;j � biÿ1;j f n

xxiÿ1;j
� bi;j f n

xxi;j
;

f n
jÿ1 � �1ÿ x̂� f n

iÿ1;jÿ1 � x̂f n
i;jÿ1 � biÿ1;jÿ1 f n

xxiÿ1;jÿ1
� bi;jÿ1 f n

xxi;jÿ1
;

f n
yyj
� �1ÿ x̂� f n

yyiÿ1;j
� x̂f n

yyi;j
;

f n
yyjÿ1
� �1ÿ x̂� f n

yyiÿ1;jÿ1
� x̂f n

yyi;jÿ1
;

f n�1
ij � �1ÿ ŷ� f n

jÿ1 � ŷf n
j � bjÿ1 f n

yyjÿ1
� bj f n

yyj
:

The computational complexity of the above scheme is simple to determine. Derivatives require

263� 6 ¯ops per grid point to compute. The local co-ordinates �x̂; ŷ� take 262� 4 ¯ops to compute.

The coef®cient bi require 26(3� 362)� 14 ¯ops. Construction of the polynomial then requires

267� 263� 7� 27 ¯ops. If several ®elds are to be interpolated, then some of these costs are

shared. For example, the coef®cients bi need only be computed once for all ®elds. Thus the cost of

the 2D scheme for interpolating n ®elds is 33n� 18 ¯ops. The operation counts in one, two and three

dimensions for this polynomial interpolation scheme are summarized in Table I.

In a distributed memory, parallel environment, arithmetic operations and interprocessor data

exchange both contribute to the total cost of a numerical scheme. Interprocessor communication is

typically much slower than local arithmetic, where bandwidth and latency determine performance.

The total amount of data to communicate and the number of communication steps are the two major

concerns. The above scheme requires a local data exchange between adjacent subdomains residing on

separate processors. Values at grid points adjacent to a subdomain boundary must be exchanged for

each ®eld which is to be interpolated. To minimize latency, the data for all ®elds should be combined

in a single message.

The Courant number C � jujDt=Dx determines the amount of data in the exchange. In particular,

the Courant number indicates how many grid lengths a ¯uid particle may travel during one time step.

Eulerian ®nite difference schemes are subject to the stability bound C 4 1 and thus the amount of

data `overlap' exchanged between processors is determined by the ®nite difference stencil alone. For

example, the ®rst-order upwind ®nite difference scheme (8) would require a one-grid-point overlap to

satisfy data dependences. A higher-order scheme such as (15) is based on a four-point stencil and

would require a two-grid-point overlap at interprocessor boundaries. Semi-Lagrangian schemes

remain stable for C > 1, implying that the length of particle trajectories may be greater than one grid

length. Consequently, in a direct parallel implementation of a sequential semi-Lagrangian scheme the

Table I. Computational cost of piecewise polynomial interpolation
scheme: ¯ops per grid point; n ®elds to interpolate. Coords: local co-
ordinates x̂. Coeffs: coef®cients bi. Derivs: derivatives fxx. Interp. cost of

interpolation. Total: total ¯op count

Coords Coeffs Derivs Interp Total

1D 2 7 3n 7n 10n� 9
2D 4 14 6n 27n 33n� 18
3D 6 21 9n 79n 88n� 27
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overlap is determined by C. For example, a semi-Lagrangian scheme based on (15) would require a

®xed overlap region dC � 1e grid points wide around the local grid partition. In two dimensions each

processor must send and receive four messages (two in the x-direction and two in the y-direction)

after every time step in order to update these overlap regions.

2.4. Domain decomposition spline interpolation in 1D

Schemes based on piecewise polynomial interpolation are subject to numerical dissipation and are

in general not conservative. Splines enforce continuity of derivatives across the entire grid and are far

less dissipative. Indeed, it is known that cubic splines exhibit better conservation properties with

respect to the L2 and C1 norms than piecewise polynomials of equivalent order and Bermejo9

demonstrates that cubic B-splines conserve mass. Thus semi-Lagrangian schemes based on splines

can better preserve many important physical properties in ¯uid dynamics simulations. The use of

splines implies global data dependences and would initially appear to limit the performance of a

distributed memory implementation. In the present paper we propose a spline interpolation algorithm

having practically the same communication cost as a purely local, piecewise polynomial scheme.

Given a 1D set of grid points x1; x2; . . . ; xn, a cubic spline S�x� on the interval �x1; xn� is a

piecewise cubic polynomial that is continuous on �x1; xn� and has continuous ®rst- and second-order

derivatives. Each section of a cubic spline is a cubic polynomial and is described by four coef®cients.

The value of an interpolating spline S�x� at the points x1; x2; . . . xn is assumed to be known. These

conditions together with the global continuity requirement result in a linear system to be solved for

the coef®cients of the basis polynomials which comprise the spline. Thus an interpolating spline is

simply a linear combination of these basis splines. B-splines have compact support and form a basis

in the space of splines20

S�x� �Pn
i�1

ciBi�x�: �18�

It is possible to modify the cubic B-splines adjacent to the boundaries of an interval to satisfy

different boundary conditions10 or an additional B-spline can be added at either end of the interval.

Cubic B-splines have compact support over four grid intervals, implying that four basis splines

Biÿ1;Bi;Bi�1 and Bi�2 overlap a grid interval �xi; xi�1�. Thus the value of the interpolating spline in

this interval is computed from a linear combination of these basis splines. A B-spline is a cubic

polynomial within each grid interval and the spline interpolant is simply a sum of four basis splines

multiplied by the associated B-spline representation coef®cients or spline transform c. Consequently,

the construction of an interpolating spline requires two steps. First the B-spline representation

coef®cients ci are computed. Next the value of the four basis splines must be evaluated at grid points,

multiplied by the corresponding ci and then added together.

The condition that S�x� is equal to prescribed function values at grid points j � 1; . . . ; n determines

the B-spline representation coef®cients ci:

Pn
i�1

ciBi�xj� � S�xj�: �19�

Since each B-spline has a non-zero value only at three grid points, equation (19) results in a

tridiagonal linear system

Ac � b: �20�
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The matrix A is later referred to as the spline transform matrix since it projects a vector from physical

space onto spline representation space. For example, the spline transform matrix for an equispaced

grid with periodic boundary conditions is

A �

1 1
4

1
4

1
4

1 1
4

1
4

1 1
4

: : :
1
4

1 1
4

1
4

1
4

1

���������������

���������������
: �21�

Semi-Lagrangian advection requires repeated interpolation on the same grid and the spline transform

matrix need only be inverted once for the lifetime of the grid. In fact, each interpolation corresponds

to a matrix±vector multiplication Aÿ1b. However, multiplication is computationally expensive,

because the inverse matrix Aÿ1 is full, and 2n operations are required to obtain the exact value of

each coef®cient ci. Arguments based on the concept of dual functions21 lead to the conclusion that the

absolute values of the elements of Aÿ1 decay exponentially away from the main diagonal. Therefore

the sum

ci �
Pn
j�1

aÿ1
ij bj �22�

can be truncated by retaining the left and right half-bands of the matrix Aÿ1, each of size nhb, and

neglecting terms which are far away from the main diagonal:

ci � cÿi � c�i � aÿ1
ii bi; �23�

where

cÿi �
Piÿnhb

j�1ÿ1

aÿ1
ij bj; c�i �

Pi�nhb

j�i�1

aÿ1
ij bj: �24�

It has been observed that entries of the inverse spline transform matrix exhibit a rapid and monotone

decay away from the main diagonal.20 Our numerical experiments indicate that, regardless of the

problem size, 21 entries per row of Aÿ1 or nhb � 10 is suf®cient to ensure an accuracy on the order of

1076. It is much less expensive to precompute an LU factorization of A and then obtain each ci to full

machine precision in 6 ¯ops by performing forward and backward substitutions instead of the 41

operations needed to compute an approximate value using Aÿ1. However, a direct LU solver is

inherently sequential.

Let us assume that the values of c are known at both the left and right boundary points of all

subdomains. Then the overall system (20) would reduce to a set of independent linear systems. These

systems are solved separately on each processor by employing an economical LU solver, where

boundary values are obtained from the truncated sum (24). A parallel algorithm along these lines for

computing a spline transform in a distributed memory environment is described below. In this case

each processor simultaneously performs the same sequence of operations. It is assumed that the

subinterval or subdomain residing on a processor begins at the grid point xifirst
and ends at the point

xilast
. The algorithm consists of the following steps.
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1. Compute the right and left truncated sums (24) c�ifirstÿ1 and cÿilast�1 for the boundary points of

adjacent processors. These sums involve only the components of b residing on this processor,

since the local grid size ilast ÿ ifirst � 1 is usually larger than nhb.

2. Send these values to adjacent processors.

3. Compute the right and left truncated sums (24) c�ifirst
and cÿilast for the boundary points of this

processor.

4. Receive cÿifirst
from the left and c�ilast

from the right.

5. Add these values to c�ifirst
and cÿilast

to obtain cifirst
and cilast

according to (23).

6. Boundary values are now known and the local components of c are obtained by solving the

local LU system.

The local LU factorizations must be precomputed and the global spline transform matrix A must be

inverted prior to performing the above algorithm. The cost of these operations is neglected since they

are performed once for the lifetime of the computational grid. Only those rows of A71 corresponding

to boundary points need to be stored. The cost of the spline transform scheme is 6 ¯ops per internal

grid point plus 41 ¯ops per local interface grid point (point on the boundary of a subdomain).

Once the spline transform c is known, it is possible to compute the spline interpolant at any point

from a linear combination of four basis splines and this operation requires 24 ¯ops. Two values of c
come from adjacent processors and thus the algorithm requires two instances of interprocessor

communication. The ®rst boundary exchange updates the spline transform c and the second permits

computation of the interpolating spline. To summarize, the proposed domain decomposition scheme

combines the locality of piecewise polynomial interpolation with the accuracy achievable only with

global spline interpolation.

2.5. Spline interpolation in higher dimensions

The fragments composing a multidimensional cubic spline are themselves cubic polynomials with

respect to each of the variables. These pieces are welded together to preserve continuity of the

derivatives

@i1

@xi1

@i2

@xi2
� � � @ir

@xir

� �� �
;

where i1; i2; . . . ; ir is a multi-index representing derivatives of orders zero, one and two. A linear

multidimensional spline space is constructed from a tensor product of 1D spline spaces,20 where a

multidimensional basis spline is the product of 1D basis splines. In higher dimensions, as in the 1D

case, interpolation consists of two stages. First the spline transform of grid point data must be found.

Then the spline interpolant between grid points is computed as a linear combination of basis splines.

The spline transform matrix is a tensor product of 1D matrices and a multidimensional spline

transform is computed from 1D transforms in each co-ordinate direction. Thus the 1D algorithm

described above is applied to multiple data vectors in the x-direction, followed by the y-direction and

so on. In fact, the procedure is completely analogous to a multidimensional Fourier transform.

The number of ¯oating point operations required to compute a multidimensional spline transform

depends on the number of subdomains. The cost for an internal point of a subdomain is 6 ¯ops

multiplied by the number of dimensions. The cost for an interface point is 41 ¯ops multiplied by the

number of dimensions, assuming that 21 entries are kept in the inverse approximation for each 1D

spline transform matrix. Since the number of internal points is much larger than the number of

interface points, any difference in cost is negligible. The number of basis spline fragments

overlapping a grid interval in 1D, 2D and 3D in four, 16 and 64 respectively. Finally, computation of
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the cubic polynomial at a particular point requires 6 ¯ops. It is assumed that interpolation on a ®xed

grid is repeated many times and the cost of all preliminary operations is neglected, such as the

inversion of A and LU factorization of the local submatrices. The operation counts in one, two and

three dimensions for the above cubic spline interpolation scheme are summarized in Table II.

A distributed memory spline interpolation algorithm requires an explicit exchange of data between

processors. The spline transform is therefore performed in each space dimension, but all non-local

data are obtained in one step. The data required for the spline transform are a single number per

interface point, the truncated sum (24). The second phase of the interpolation algorithm also requires

a data exchange during which each processor must receive the spline transform coef®cients from

adjacent processors. In this case the overlap region is two grid points wide. The communication

pattern for the distributed spline interpolation algorithm is illustrated in Figure 1.

3. TRAJECTORY INTEGRATION ALGORITHMS

The trajectory equation (2) is an ordinary differential equation (ODE). In the context of one-step

Eulerian±Lagrangian methods the backward integration of (2) is represented by the initial value

problem (4), where it is assumed that u�x; tn� is known. Given a vector y and dependent variable t, the

general form of the initial value problem in ordinary differential equations is

y0 � f�y; t�; y�t0� � y0; �25�

where f is some non-linear function of y and the dependent variable t. There exist many well-known

techniques for the numerical integration of (25) and these are described in the classic text by Gear.22

Table II. Computational cost of multidimensional cubic
spline interpolation scheme: ¯ops per grid point

Spline transform Interpolation Total

1D 6 28 34
2D 12 112 124
3D 18 448 466

Figure 1. Communication pattern for distrubuted memory bicubic spline interpolation algorithm. Data blocks required for the
spline transform are shown in black. A spline transform requires truncated sums (one number per interface point) from
processors located to the north, south, east and west. After the spline transform is computed, a two-element-wide boundary
layer of spline transform coef®cients c (shown in grey) permits computation of the spline interpolant at any location. Unlike the

spline transform, the communication pattern for the interpolant requires data from corner processors
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One-step methods of the Runge±Kutta type will be considered. A one-step integration scheme with

step size h is written in the form

y�tn�1� � y�tn� � hF�y�tn�;Dt�; �26�
where F is known as the increment function. An explicit second-order Runge±Kutta method to

integrate (25) from tn to tn�1 has an increment function

F�y�tn�;Dt� � 1
2
�f�y�tn�; tn� � f�y�tn� � hf�y�tn�; tn�; tn��: �27�

The local truncation error d of the integration method is de®ned by

d�yn;Dt� � yn ÿ y�tn� � hF�y�tn�;Dt�; �28�
where yn is the numerical solution and y�tn� is the actual solution at time tn. If kdk4CDtp�1, the

method is said to be of order p. In the ODE (2) the velocity u is identi®ed as the non-linear function f
and x replaces y. When the trapezoidal or Heun method (27) is applied to integrate (4), we obtain

x* � xÿ Dt

2
�u�x; tn� � u�xÿ Dtu�x; tn�; tn ÿ Dt��:

The above approach can be extended to the classical fourth-order Runge±Kutta scheme.22 For large

values of the Courant number, time truncation errors can begin to dominate and a high-order

integration method may be required. The global accuracy of a semi-Lagrangian scheme depends not

only on the order of the chosen interpolation scheme but also on the order p of the trajectory

integration algorithm.

When the value of u at time level tn is not available, a numerical method to predict the velocity is

required. The combination of prediction with backward integration is a predictor±corrector-type

method. Malevsky10 combines a quadratic extrapolation based on Adams predictor±corrector

methods with a one-step trapezoidal Runge±Kutta method. In this case an o�Dt2�-accurate velocity is

computed,

u�x; tn� � 23
12

u�x; tnÿ1� ÿ 16
12

u�x; tnÿ2� � 5
12

u�x; tnÿ3�; �29�
and then the trapezoidal method (27) is employed as a corrector. For example, it was found that one

corrector iteration provided suf®cient accuracy in simulations of convective turbulence at high

Prandtl number. Another issue which is not addressed here is the error introduced by interpolation to

obtain u between grid points. In particular, this would be required in (27) to obtain u at tn ÿ Dt.

In the convection models of both Malevsky10 and Robert,23 cubic interpolation of the velocity was

employed. For this reason a single corrector iteration such as (27) is recommended, since repeated

cubic interpolation of u in 2D or 3D according to the iterative scheme (5) is very costly. For example,

a second-order Adams-type predictor combined with a second-order Heun corrector resulted in a 50%

improvement in the ef®ciency of the existing semi-Lagrangian advection scheme in the MC2

compressible mesoscale weather model.24 Several authors have proposed alternative trajectory

integration methods25 and some of these are based on the Taylor series expansion of the position

vector x�t� as

x�t� � x�t ÿ Dt� � P1
k�1

�Dt�k
k!

dkx

dtk
�t ÿ Dt�:

Although we propose interpolation algorithms suitable for a distributed memory model of

computation, the upstream trajectory integration implies a large data overlap for large Courant

number C. Lie and SkaÊlin26 advocate an entirely different approach to the upstream departure point

problem. They propose only tracking (integrating) the particle trajectories up to the interprocessor
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boundaries. The upstream value of a ®eld at the intersection of a trajectory with an interprocessor

boundary is then computed using an interpolation-in-time algorithm. This approach is intended to

minimize the communication overhead and can be employed with either of the interpolation schemes

described above. However, the advantage of such a scheme in the multidimensional case remains to

be demonstrated.

4. ERROR ANALYSIS

Recent work by Falcone and Ferretti27 and Falcone et al.28 provides a priori L1�O� and pointwise

error estimates for the global rate of convergence of a class of ®nite element and polynomial

interpolation-based semi-Langrangian advection schemes. In order to optimize the ef®ciency and

numerical accuracy of such schemes, the authors characterize the relationship between the time step

Dt and space step Dx for particular polynomial interpolation bases and trajectory integration methods.

We adopt the notation of Falcone et al.28 by de®ning a regular Cartesian grid with nodes

xj; j 2 Q � f1; . . . ; qg, and let cj�x�j2Q be a family of bounded functions such that

cj�xi� � dij; kcjk1 � 1. These functions are then used to construct a local (®nite-dimensional)

representation of the approximate (semi-Lagrangian) solutions and such approximations can be based

on ®nite element or polynomial bases.

It is assumed that the initial ®eld v�x; 0� belongs to the Sobolev space W s;p�O� and thus has

regularity s in the Lp�O� norm. According to Falcone and Ferretti,27 the error of a semi-Lagrangian

scheme is bounded according to

jvn
j ÿ v�xj; nDt�j4C�nDt� Dtp � 1

Dt
E�Dx�

� �
; �30�

where n is the number of time steps of length Dt; p is the order of the trajectory integration scheme

(see equation (28) in Section 3), Dx is the space step and E�Dx� is the interpolation error. Bermejo29

derives a similar result (see equation (25) of Reference 9). Equation (30) may refer to either the

global or local (in space) error. The global error depends on either the regularity of the solution or the

interpolation error,28 whereas the local error in smooth regions depends solely on the trajectory

truncation error and the interpolation error. In our numerical tests, both global and local errors are

measured in order to discriminate between these effects. If kPm jcmjk1 � 1, then the estimate (30)

holds at a single node xj provided that the functions cj have compact support in a ball of radius

o�Dx�. This is true for ®nite elements and when Dx � o�Dt�. In this case, E�Dx� represents the local

interpolation error in the neighbourhood of xj. For polynomial interpolation it is well-known that

Lagrange basis polynomials lj�x� satisfy lj�xj� � 1, lj�xm� � 0;m 6� j, but the condition kljk1 � 1 is

only valid when the nodes xj are zeros of Legendre polynomials of degree q. Thus the interpolation

error may not be bounded in the L1�O� norm. Nevertheless, we can still apply local error analysis to

Lagrange interpolation on equispaced grids. In the present paper we are primarily concerned with B-

spline bases Bj�x� which have compact support in an interval of length 4Dx and also satisfy

kBjk1 � 1 and kPm jBmjk1 � 1.20

To design the most ef®cient and accurate scheme for a given Dx and Dt, the global and local errors

can be estimated given piecewise polynomial approximations (of degree r) with compact support in a

ball of radius o�Dx� of the underlying basis functions. Moreover, we assume that the solution v has a

®nite global regularity s �v 2 W s;1�O�� and is piecewise C1. A bound on the interpolation error is

therefore

E�Dx�4CDxmin�s;r�1�: �31�
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Substitution of (31) into (30) results in the global error estimate

jvn
j ÿ v�xj; nDt�j4C Dtp � Dxmin�s;r�1�

Dt

� �
�32�

and assuming that the solution is C1 in a small neighbourhood centred at xj leads to the local error

estimate

jvn
j ÿ v�xj; nDt�j4C Dtp � Dxr�1

Dt

� �
: �33�

In the latter case we assume that Dx � o�Dt�. It is then possible to express Dt as a function of Dx such

that Dt � Dxa and substituting this relation into (32) gives

jvn
j ÿ v�xj; nDt�j4C�Dxap � Dxmin�s;r�1�ÿa�: �34�

The global convergence rate m is controlled by the minimum of two exponents ap and

min�s; r � 1� ÿ a and the optimal convergence rate is attained at

a � min�s; r � 1�
p� 1

: �35�

The optimal convergence rate depends on the regularity of the solution. If the solution is not smooth

enough �s < r � 1�, increasing the interpolation order r does not improve the rate m. In regions where

the solution is smooth the convergence rate may not improve, since the time truncation error does not

depend on the local regularity.

For suf®ciently smooth �s5 r � 1� advected ®elds the convergence rate is

m � ap � p�r � 1�
p� 1

: �36�

If r 5 p, the condition Dx � o�Dt� is no longer valid and thus the error may not depend solely on the

local regularity of the solution. Consequently, for smooth enough solutions, we have the following.

1. When r < p, the local error estimate (33) holds, so (36) may apply.

2. When r5 p, the convergence rate can be optimized by

(a) choosing a to minimize the global L1�O� error

(b) choosing 0� a4 1.

5. NUMERICAL RESULTS

In this section we perform two sets of tests. The ®rst set of tests examines the mass and energy

conservation properties of the semi-Lagrangian schemes described in this paper. Advection of a

sharply peaked cone in a uniform rotational ¯ow ®eld in 2D is considered. The rotating cone problem

has become a standard test case for numerical advection algorithms since it is perhaps the simplest

problem with spatial variation of the ¯ow ®eld. The rotating cone problem has been employed by

many authors to test numerical advection schemes and it is now part of many standard test suites in

computational ¯uid dynamics (see the textbook by Vreugdenhil and Koren.30 Spline-based advection

schemes are described by Bermejo9 and Bermejo and Staniforth.31)

In a second set of tests we rotate a paraboloid which is smooth within a ball of radius jxÿ x0j < R.

This allows us to compute both global and local errors and analyse these according to the theoretical
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estimates of Falcone and Ferretti.27 For solid body rotation at a constant angular rotation rate of o
radians per second the ¯ow ®eld is given by u � �ÿoy;ox�, where

u ? H � ÿoy
@

@y
� ox

@

@x
:

In column vector notation this problem is equivalent to the integration of a linear system of ordinary

differential equations

x0

y0

� �
� 0 ÿo

o 0

� �
x

y

� �
� 0 ÿ1

1 0

� �
u

v

� �
:

5.1. Conservation tests

Our ®rst two test problems are based on a low-resolution grid in Reference 9 and the high-

resolution grid in Reference 31. In these tests we compute the ®eld at the exact analytic departure

points to isolate the effects introduced by repeated interpolation of the advected ®eld from those of

the trajectory integration method. In both cases the initial 2D scalar ®eld is de®ned by

f �x; y� � H�1ÿ jxÿ x0j=R�; jxÿ x0j4R;
0; otherwise;

�
�37�

on the domain O � �ÿ0�5; 0�5� � �ÿ0�5; 0�5�. R and H are the radius and height of the cone

respectively and x0 � �x0; y0� is the centre of the cone. The velocity components are

u � �u; v� � �ÿoy;ox�, with constant angular rotation rate o � 0�3636� 10ÿ4 sÿ1. This is now a

standard test case in the meteorological literature, representing one rotation of the initial ®eld every

2 days.32 For example, typical synoptic-scale meteorological models based on semi-Lagrangian

advection schemes use time steps of the order of Dt � 1800 s, corresponding to one revolution every

96 time steps. In the ®rst case a 35635 grid is employed with uniform mesh length

Dx � 1=35;H � 100, R � 4Dx and �x0; y0� � �ÿ8Dx; 0�. The second case employs a 1006100 grid

with uniform mesh length Dx � 0�01, H � 100, R � 8Dx and �x0; y0� � �ÿ14Dx; 0�. The maximum

Courant number Cmax occurs near the boundary @O, where

Cmax � max 0�5oDt

Dx
; 0�5oDt

Dy

� �
:

Bermejo,9 Priestley32 and Bermejo and Staniforth31 monitor the evolution of the normalized ®rst

(mass) and second (energy) moments of an advected scalar ®eld f to determine the conservation

properties of spline interpolation semi-Lagrangian schemes. The moments are de®ned by�
f dx=

�
f0dx and

�
f 2dx=

�
f 2
0 dx respectively. The normalized maximum and minimum heights

max f =max f0 and min f =max f0 monitor dissipation and monotonicity of the numerical scheme.

Tests on 35635 and 1006100 grids are reported using a time step of Dt � 1800 s and exact analytic

departure points.33 One full rotation of the cone corresponds to Ntot � 96 time steps. For these tests a

total of Nrot � 6 full rotations of the cone are taken.

Results for the low-resolution 35635 grid are presented in Tables III and IV, whereas the

integrations on the high-resolution 1006100 grid are summarized in Tables V and VI. The domain

decomposition B-spline with nhb � 12 exhibits better mass conservation properties than the

piecewise cubic Newton interpolating polynomial on the 35635 grid as indicated by the ratio�
f dx=

�
f0dx. The results are similar on the 1006100 grid but mass is not conserved up to machine

precision. Further testing revealed that mass conservation improves as nhb increases, i.e.�
f dx=

�
f0dx remains close to 1�0. Relatively weak energy dissipation for cubic B-splines (see
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Table III. 35635 grid. Dt� 1800 s. Cmax � 2�29. Exact analytic departure points. Piecewise cubic Newton
polynomial

Ntot Nrot

�
f dx=

�
f0dx

�
f 2dx=

�
f 2
0 dx max f =max f0 min f =max f0

0 0 0�10000006101 0�10000006101 0�10000006101 0�00000006100

96 1 0�10018086101 0�72833666100 0�70280236100 ÿ0�2422089610ÿ1

192 2 0�99569456100 0�61712576100 0�58294676100 ÿ0�2474830610ÿ1

288 3 0�98174976100 0�54955666100 0�51252136100 ÿ0�2357593610ÿ1

384 4 0�96827246100 0�50218006100 0�46434746100 ÿ0�2318519610ÿ1

480 5 0�95830556100 0�46635556100 0�42853036100 ÿ0�2247365610ÿ1

576 6 0�95234486100 0�43797076100 0�40043026100 ÿ0�2046848610ÿ1

Table IV. 35635 grid. Dt� 1800 s. Cmax � 2�29. Exact analytic departure points. Domain decomposition cubic
B-spline

Ntot Nrot

�
f dx=

�
f0dx

�
f 2dx=

�
f 2
0 dx max f =max f0 min f =max f0

0 0 0�10000006101 0�10000006101 0�10000006101 0�00000006100

96 1 0�99979616100 0�94585376100 0�93538626100 ÿ0�2123398610ÿ1

192 2 0�99944936100 0�90533556100 0�89333366100 ÿ0�2664576610ÿ1

288 3 0�10002376101 0�87184656100 0�85595846100 ÿ0�2922192610ÿ1

384 4 0�10013676101 0�84330616100 0�82359436100 ÿ0�2992606610ÿ1

480 5 0�10024086101 0�81845906100 0�79537806100 ÿ0�3128533610ÿ1

576 6 0�10031856101 0�79648086100 0�77050876100 ÿ0�3382451610ÿ1

Table V. 1006100 grid. Dt� 1800 s. Cmax � 6�54. Exact analytic departure points. Piecewise cubic Newton
polynomial

Ntot Nrot

�
f dx=

�
f0dx

�
f 2dx=

�
f 2
0 dx max f =max f0 min f =max f0

0 0 0�10000006101 0�10000006101 0�10000006101 0�00000006100

96 1 0�99992776100 0�96832906100 0�84745996100 ÿ0�1064930610ÿ1

192 2 0�99985006100 0�94386466100 0�82184726100 ÿ0�1272116610ÿ1

288 3 0�99977086100 0�92185996100 0�80179616100 ÿ0�1369425610ÿ1

394 4 0�99969496100 0�90179626100 0�78284916100 ÿ0�1437081610ÿ1

480 5 0�99962216100 0�88335706100 0�76477776100 ÿ0�1517552610ÿ1

576 6 0�99955346100 0�86631056100 0�74766886100 ÿ0�1584693610ÿ1

Table VI. 1006100 grid. Dt� 1800 s. Cmax � 6�54. Exact analytic departure points. Domain decomposition
cubic B-spline

Ntot Nrot

�
f dx=

�
f0dx

�
f 2dx=

�
f 2
0 dx max f =max f0 min f =max f0

0 0 0�10000006101 0�10000006101 0�10000006101 0�0000006100

96 1 0�99996206100 0�99518946100 0�91203596100 ÿ0�9839442610ÿ2

192 2 0�99992466100 0�99192016100 0�89613926100 ÿ0�1120558610ÿ1

288 3 0�99988606100 0�98903016100 0�88421746100 ÿ0�1197218610ÿ1

384 4 0�99984486100 0�98634906100 0�87491356100 ÿ0�1232583610ÿ1

480 5 0�99980696100 0�98379576100 0�86765706100 ÿ0�1233632610ÿ1

576 6 0�99976666100 0�98133016100 0�86191686100 ÿ0�1216845610ÿ1
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Figure 2) is indicated by slowly decreasing values of
�

f 2dx=
�

f 2
0 dx and max f =max f0. We also

observe that the initial height decreases by o�Dx� each time step. The method based on piecewise

cubic polynomial interpolation tends to be more dissipative as indicated by a faster decrease in�
f 2dx=

�
f 2
0 dx and max f =max f0. For piecewise cubic interpolation we note that the amount of

dissipation depends on the `residual' Courant number of local co-ordinate x̂.34

5.2. Convergence tests

In this subsection we compare numerical results with those reported by Falcone et al.28

Experiments are designed so that a optimizes either the global L1 or local error. We consider

numerical schemes with second-order Heun or fourth-order Runge±Kutta (RK4) time stepping

coupled with domain decomposition cubic B-splines and piecewise cubic polynomials. The test case

is a rotating paraboloid with rotation rate o � 1 in the domain O � �ÿ0�5; 0�5� � �ÿ0�5; 0�5� with

f �x; y� � H�1ÿ jxÿ x0j2=R2�; jxÿ x0j4R;
0; otherwise;

�
�38�

where x0 � �0�2; 0�2�, H� 1 and R� 0�13, so that the solution is globally Lipshitz continuous and

C1 outside the curve jxÿ x0j � R. The global and local errors are computed after one rotation at

t � 2p. Table VII contains the global L1 errors kf ÿ f0k1 for B-spline and piecewise cubic

interpolation coupled with the Heun and Runge±Kutta methods. Three different time and space step

sizes are employed, resulting in maximum Courant numbers ranging from Cmax < 1 up to the limit

where trajectories intersect, Cmax � 16.14,35 Both the error due to repeated interpolation (see Section

5.1) and that due to the trajectory integration method contribute to the total error of the semi-

Lagrangian schemes reported in Tables VII and VIII. The RK4=B-spline scheme is better than the

other three schemes in terms of both accuracy and low viscosity. In particular, the RK4=B-spline

scheme performs far better at lower resolutions.

For the optimal a and relation Dt � Dxa the global L1 and local errors at t � 2p are listed in

tabular form. The order of convergence is computed as

log�E1=E2�
Dx1=Dx2

; �39�

Figure 2. Advected cone after Nrot� 6 rotations. 35635 grid. Dt� 1800 s. Cmax � 2�29. Exact analytic departure points. Left:
piecewise cubic Newton polynomial. Right: domain decomposition cubic B-spline

SEMI-LAGRANGIAN ADVECTION 469

# 1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL 25: 455±473 (1997)



where Dx1 and Dx2 are the largest and smallest two steps taken, with errors E1 and E2 respectively. In

Tables IX and X the column heading L1 refers to the global error, whereas `local' is the error

obtained in the ball jxÿ x0j < R=2 and the observed rate is computed according to (39). This

problem has W 1;1�O� regularity and thus the optimal global error exponent is a � 1=p. B-splines

have order r� 4 and when coupled with a fourth-order Runge±Kutta method p� 4 we have r 5 p.

Thus we can apply either 2(a) or 2(b) in Section 4 to optimize the local error rate. From Table IX we

see that choosing Dt � Dx3=5 optimizes the local convergence rate of the RK4=B-spline scheme and

choosing a � 1
5

slightly underestimates the global convergence rate.

Table VII. L1 errors kf ÿ f0k1 at t � 2p for rotating paraboloid (38). Grid sizes 25625, 50650, 1006100
correspond to step sizes Dx � 0�04; 0�02; 0�01

Fourth-order Runge±Kutta

Piecewise cubic Cubic B-spline

Dx Dt � p=10 Dt � p=20 Dt � p=40 Dt � p=10 Dt � p=20 Dt � p=40

0�04 0�106 0�136 0�277 0�0561 0�0696 0�1083
0�02 0�0658 0�0834 0�0970 0�0402 0�0486 0�0530
0�01 0�0425 0�0500 0�0600 0�0266 0�0303 0�0352

Second-order Heun

Piecewise cubic Cubic B-spline

Dx Dt � p=10 Dt � p=20 Dt � p=40 Dt � p=10 Dt � p=20 Dt � p=40

0�04 0�338 0�171 0�277 0�346 0�119 0�1042
0�02 0�377 0�132 0�103 0�397 0�114 0�0608
0�01 0�401 0�115 0�0710 0�421 0�116 0�0478

Table VIII. L1 norms kf k1 at t � 2p for rotating paraboloid (38). Grid sizes 25625, 50650, 1006100
correspond to step sizes Dx � 0�04; 0�02; 0�01

Fourth-order Runge±Kutta

Piecewise cubic Cubic B-spline

Dx Dt � p=10 Dt � p=20 Dt � p=40 Dt � p=10 Dt � p=20 Dt � p=40

0�04 0�910 0�849 0�686 0�969 0�976 0�950
0�02 0�999 1�002 1�010 1�000 1�002 1�001
0�01 1�000 1�000 1�000 1�000 1�000 1�000

Second-order Heun

Piecewise cubic Cubic B-spline

Dx Dt � p=10 Dt � p=20 Dt � p=40 Dt � p=10 Dt � p=20 Dt � p=40

0�04 0�959 0�872 0�685 1�015 0�999 0�956
0�02 0�995 0�999 1�010 0�996 0�998 1�001
0�01 0�998 0�998 1�000 0�997 0�997 1�000
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Table X indicates that both the Runge±Kutta and Heun piecewise cubic schemes approach the

optimal local convergence rate when Dt � Dx3=5. The local error at high resolution Dx � 0�01 is

better in the case of B-splines. However, to achieve such a high convergence rate, the Courant

number must remain small �C < p�. We also ®nd that these schemes can achieve a slightly higher

global convergence rate but the global error for domain decomposition cubic B-splines is still smaller

at the large Courant numbers resulting from Dt � Dx1=5.

Table IX. L1 and local errors for rotating paraboloid

RK4=B-spline scheme

Dt � Dx1=5 Dt � Dx3=5

Dx L1 Local L1 Local

0�04 0�04733 0�015042 0�07443 0�037560
0�02 0�04137 0�004885 0�05635 0�008721
0�01 0�02662 0�001072 0�04034 0�000536
Rate 0�42 1�91 0�44 3�06

Heun=B-spline scheme

Dt � Dx1=3 Dt � Dx

Dx L1 Local L1 Local

0�04 0�40948 0�409478 0�11061 0�089810
0�02 0�30230 0�200723 0�08400 0�016482
0�01 0�20944 0�121656 0�05744 0�003791
Rate 0�48 0�87 0�47 2�28

Table X. L1 and local errors for rotating paraboloid

RK4=B-piecewise cubic scheme

Dt � Dx1=5 Dt � Dx3=5

Dx L1 Local L1 Local

0�04 0�08871 0�066522 0�14189 0�135462
0�02 0�06400 0�006593 0�09845 0�026563
0�01 0�04255 0�001097 0�06641 0�002149
Rate 0�53 2�96 0�55 2�99

Heun=piecewise cubic scheme

Dt � Dx1=3 Dt � Dx

Dx L1 Local L1 Local

0�04 0�40455 0�404545 0�33483 0�334834
0�02 0�29394 0�224590 0�15006 0�089693
0�01 0�20285 0�120935 0�10055 0�012611
Rate 0�50 0�87 0�87 2�36
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6. CONCLUSIONS

We conclude that the domain decomposition B-spline interpolation method designed for MIMD

distributed memory, parallel computation maintains a low communication overhead while still

achieving the accuracy of a global B-spline interpolation scheme. In ¯uid dynamics models,

piecewise cubic polynomial interpolation should only be employed for relatively short model runs

owing to excessive numerical dissipation. In particular, the domain decomposition cubic B-spline

interpolation scheme exhibited superior mass and energy conservation properties compared with the

scheme based on piecewise cubic Newton polynomials. For domain decomposition B-splines there is

a trade-off between mass conservation and the amount of computation at subdomain boundaries

which is controlled by the half-bandwidth nhb. Both methods have similar communication

requirements and should prove to be scalable on distributed memory, parallel computers.

The global accuracy of an Eulerian±Lagrangian method depends on the regularity of the solution.

Near steep gradients or fronts the solutions may not be smooth and increasing the interpolation order

does not necessarily increase the global convergence rate of a semi-Lagrangian scheme. An optimal

convergence rate can be achieved through the judicious choice of step sizes Dx and Dt. To maintain

accuracy at large Courant numbers, a high-order numerical ODE solver is required. Another

important issue which must be addressed is the computational complexity of the overall scheme.

Runge±Kutta methods require evaluation of the velocity between grid points and this may require

interpolation of the velocity u. In 2D and 3D such a computation becomes very costly and alternative

methods should be considered.
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